
DoCSoc Interview Series: An
Introduction to Space & Time

Complexity

By Arjun Banerjee

sli.do/197346

About Me

● Computing Final Year MEng.

● Software Engineer Intern @ Microsoft.

● Previously interned at a fintech startup and a large oil & gas service provider.

● I have done a lot of interviews.

● Your Well-being Dep Rep :).

sli.do/197346

Technical Interview: Coding Section
Code Review

1. Code snippet is shown to you:

1. Questions about what it does.

2. Questions about the performance of the code.

3. Questions about what improvements could be
made. (Maybe even implementation)

Coding Problem

1. You are given a problem statement:

“Given an array of integers nums and an
integer target, return indices of the two
numbers such that they add up to target.”

1. Discuss and implement a solution to the

problem.

2. Questions about the performance of the

code.

3. Iterate between step 2 and 3 until an

optimal solution is reached or you run out of

time.

def f(x: list[str]) -> int:

count = 0

for s in x:

if g(s):

count += 1

return count

sli.do/197346

How do you measure the
performance of code?

sli.do/197346

Code Performance

● How long does it take to run on an arbitrary input?

What happens as the size of the input increases?

● What is the memory footprint of the execution on an

arbitrary input? What happens as the size of the

input increases?

Time Space

sli.do/197346

How do you describe the
performance of code in an

interview?

sli.do/197346

Big O Notation

A standard way to describe the asymptotic upper

bound of a function. More on this in Algorithms II :)

● Why the upper bound?
○ Be able to handle the worst case.

● What is the input size?
○ Length of a list.

○ Depth of a tree.

○ How large a number is.

1*yiyfZodqXNwMouC0-B0Wlg.png (1272×1100) (medium.com)

Sp
ac

e
/

Ti
m

e
 →

n (input size) →

sli.do/197346

https://miro.medium.com/max/2544/1*yiyfZodqXNwMouC0-B0Wlg.png

Big O Notation
Function Big O Name

f(n) = 42 O(1) Constant

f(n) = 10log(n) O(log(n)) Logarithmic

f(n) = 60n + 2 O(n) Linear

f(n) = 12n2 O(n2) Quadratic

f(n) = cnx O(nx) Polynomial

f(n) = 2n O(2n) Exponential

f(n) = 3nlog(n) O(nlog(n)) Log-linear / Quasilinear

f(m, n) = mn + mlog(n)
+ 3m + 2n

O(mn) N/A

Rules:
1. Drop constants
2. Drop non-dominant terms
3. If you have multiple inputs all should

appear in the result, apply 1, 2 to each
input’s terms.

1*yiyfZodqXNwMouC0-B0Wlg.png (1272×1100) (medium.com)

Sp
ac

e
/

Ti
m

e
 →

n (input size) →

sli.do/197346

https://miro.medium.com/max/2544/1*yiyfZodqXNwMouC0-B0Wlg.png

Time Complexity

“Time complexity is the amount of time taken by an algorithm to run, as a function of the length of

the input. It measures the time taken to execute the statements of code in an algorithm.”

● We can assume primitive operations (that make up statements) will take a constant amount of

real time to execute.

● Therefore we can estimate the runtime by the number of statements executed given an input.

sli.do/197346

General Approach To Calculating Time
Complexity

1. Unless given, clearly state variables you are going to use to describe your inputs e.g. n is the

length/size of input1.

2. Walk through your code statement by statement and assign a time complexity to it in terms of

your variables. Add comments to your code if you have to.

3. Group logical sections of code together (discussed after) to create the terms in the final

function on the input.

4. Use Big O notation to describe the time complexity.

sli.do/197346

Single statement
Java:

● Primitive operations e.g. arithmetic, logical,

bitwise etc. Can be assumed to run in

constant time or O(1)

● Method calls can be a bit more complex.

These may require deeper knowledge about

the method e.g. Arrays.binarySearch(...) in

Java has a time complexity of O(log2(n)).

public int f(List<Integer> x) {

return x.size(); // O(1)

}

public int f(int x, int y) {

return x + y; // O(1)

}

sli.do/197346

Conditionals (If-else/Switch statements)

1. Calculate the time complexity of each

branch, also including the condition

evaluation (additive).

2. Assign the worst time complexity to the if-

statement.

Java:

// n is the length of foo

public int f(int[] foo) {

// O(n)

if(foo.length % 2 == 0) { // O(1)

return evenFunc(foo); // O(log(n))

} else {

return oddFunc(foo); // O(n)

}

}

sli.do/197346

Loops

1. First calculate the time complexity of the

statements that are executed inside the

loop.

2. Multiply this by the length of the loop.

3. For nested loops you can recursively follow

the steps above. Starting at the inner-most

loop moving outwards.

Java:

// n is the size of xs

public boolean f(int[] xs, int t) {

...

for(int x : xs) { // O(1 * n) = O(n)

if(x == t) return true; // O(1)

}

...

}

sli.do/197346

Loops

1. First calculate the time complexity of the

statements that are executed inside the

loop.

2. Multiply this by the length of the loop.

3. For nested loops you can recursively follow

the steps above. Starting at the inner-most

loop moving outwards.

Java:

// n <- size of xs

public boolean f(int[] xs, int t) {

...

// O(n * t) = O(nt)

for(int x : xs) {

// O(t * 1) = O(t)

for(int i = 0; i < t; i++) {

f(x,i); // O(1)

}

}

...

}

sli.do/197346

Consecutive Statements

1. Calculate the time complexity for

each statement / logical group of

statements.

2. Add these together.

3. Simplify with Big O rules.

Java:

// n <- size of xs

public List<Integer[]> f(int[] xs, int t) {

Arrays.sort(xs); //O(nlog(n))

List<Integer[]> pairs = new ArrayList<>(); // O(1)

for(int i : xs) { // O(n * n) = O(n2)

for(int j : xs) { // O(n * 1) = O(n)

if(i * j == t)

pairs.add(new Integer[]{i, j}); // O(1)**

}

}

return pairs; //O(1)

}

Time complexity:
O(nlog(n) + 1 + n2 + 1) = O(n2)

** Amortized time complexity

sli.do/197346

Recursion 1. Figure out worst time complexity of the method

assuming you have the value of the recursive call.

2. Roughly calculate the number of recursive calls.

3. Multiply this by the number of recursive calls.

4. Simplify with Big O.

Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) {

return 1;

}

return n * f(n - 1);

}

// assume n >= 0

public int f(int n) {

if(n <= 1) { // O(1)

return 1; // O(1)

}

return n * f(n - 1); // * is O(1)

}

Time complexity: O(1 * n) = O(n)

...f(n) f(n - 1) f(n - (n - 1))

n calls

Recursion
Tree

sli.do/197346

Recursion
Java:

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n; // O(1)

return fib(n - 1) + fib(n - 2); // O(1)

}

Visualise recursion tree

fib(n)

fib(n - 2)

fib(n - 2)fib(n - 1)

fib(n - 4)fib(n - 3)fib(n - 3)

...

fib(n - (n - 1))

d (tree depth) = n
#nodes (assuming full tree) = 2d - 1 = 2n -
1
O(1 * #nodes) = O(2n - 1) = O(2n)

sli.do/197346

Space Complexity

“Space complexity is the amount of memory used by the algorithm (including the input values
to the algorithm) to execute and produce the result.”

Space Complexity = Input Space + Auxiliary Space

● Input Space: Space allocated to store the input.
● Auxiliary Space: Temporary space allocated during the algorithm’s execution.
● Generally, during interviews, the focus is on the Auxiliary Space used by your solution. So we

will focus on that.
● We do not need to think in bytes, we can assume overhead is constant and primitive data type

/ static data structure sizes are constant too.

sli.do/197346

General Approach To Calculating Space
Complexity

Pretty much the same as time complexity.

1. Unless given, clearly state variables you are going to use to describe your inputs e.g. d is the

depth of tree1.

2. Walk through your code statements look for ones that will allocate memory.

3. Figure out the maximum sizes for dynamic data structures (ones that can grow and shrink).

4. Sum all of these together.

5. Use Big O notation to describe the space complexity / auxiliary space used.

sli.do/197346

Auxiliary Space: Variable Declaration
1. Initialising primitive types e.g. int, char,

bool, etc or static data types will have

constant space (O(1)).

2. Initialising a dynamic data structures will

usually have constant overhead.

3. Initialising an array:
a. Size known at compile time: constant

b. Size dependent on input (evaluated at

runtime): a function of the input.

Java:

public void f(int[] xs) {

int len = xs.length;

int[] arr1 = new int[len];

int[] arr2 = new int[26];

List<Integer> l = new ArrayList<>();

}

// n is length of xs

public void f(int[] xs) {

int len = xs.length; // O(1)

int[] arr1 = new int[len]; // O(n)

int[] arr2 = new int[26]; // O(1)

List<Integer> l = new ArrayList<>(); // O(1)

}

sli.do/197346

public List<Integer> f(int[] xs) {

List<Integer> l = new ArrayList<>();

for(int i = 0; i < xs.length; i++) {

if(xs[i] % 2 == 0) l.add(i);

}

return l;

}

Auxiliary Space: Modifying Dynamic Data Structures

● Dynamic data structures can allocate and

deallocate memory (grow or shrink) during

runtime e.g. lists, maps / dicts, trees,

graphs, heaps, etc.

● Look for methods that will modify their

size.

● For each of these data structures calculate

the maximum size (worst case) they can

reach during execution and sum them.

Java:

public void f(int[] xs) {

int len = xs.length;

int[] arr1 = new int[len];

int[] arr2 = new int[26];

List<Integer> l = new ArrayList<>();

}

// n is the length of xs

public List<Integer> f(int[] xs) {

List<Integer> l = new ArrayList<>(); // O(n)

// O(1) for i

for(int i = 0; i < xs.length; i++) {

if(xs[i] % 2 == 0) l.add(i); // <-

}

return l;

}

Auxiliary Space = O(1 * n) = O(n)
Input size = O(n)
Space Complexity = O(n + n) = O(n)

sli.do/197346

1. Think about how method calls are executed
a. Each method call pushes a stack frame onto the call

stack.

b. Information about parameters (values/references),

local variables, return addresses, etc are stored in

this stack frame.

c. Recursion causes the call stack to grow until the base

case is reached, then it will shrink to aggregate the

results.

2. Again visualise the recursion tree and figure out the

max depth. This is the maximum number of stack

frames present for the method on the call stack at
one time.

Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) {

return 1;

}

return n * f(n - 1);

}

Auxiliary Space: Recursion

sli.do/197346

Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) {

return 1;

}

return n * f(n - 1);

}

Auxiliary Space: Recursion
...f(n) f(n - 1) f(n - (n - 1))

n calls

f(3)

Call Stack

...

f(2)

f(1)

Auxiliary Space = O(1 * n) = O(n)
Input size = O(1)
Space Complexity = O(1 + n) = O(n)

sli.do/197346

Java:

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n;

return fib(n - 1) + fib(n - 2);

}

Visualise recursion tree

fib(n)

fib(n - 2)

fib(n - 2)fib(n - 1)

fib(n - 4)fib(n - 3)fib(n - 3)

...

fib(n - (n - 1))

d (max tree depth) = n
Auxiliary Space = O(n)
Input Size = O(1)
Space Complexity = O(n)

Auxiliary Space: Recursion

sli.do/197346

General Approach To Optimising A solution

After you have calculated the space and time complexity for your solution. You might wonder how you

could improve it or whether it is possible to.

● Have an idea of the best conceivable runtime: If you were to solve the problem by hand what steps

would you intuitively take?

● Look for bottlenecks: sections of code which produce the dominant terms in your worst case

complexities.

● Space / Time trade-off: You can most likely sacrifice space to improve the time complexity e.g.

caching.

● Optimise for the problem context. Are there constraints/patterns in the input, more reads than

writes etc?

sli.do/197346

An Example

sli.do/197346

Calculate The nth Fibonacci Number (0 indexed)
Java: Time complexity: O(2n)

Space complexity: O(n)

Where can we optimise?

The recursive branches causes an exponential
number of method calls? Can we reduce this?

Overlapping subproblems! We are solving things
we have solved before.

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n;

return fib(n - 1) + fib(n - 2);

}

sli.do/197346

Memoisation / Caching
Java:

Time complexity: O(n)
Space complexity: O(n + n) = O(n)

Where can we optimise?

We are still calculating in a top-down approach so
the call stack is still growing quite large. This could
lead to a stack overflow error.

public int fib(int n) {

if(n <= 1) return n;

return helper(n, new HashMap<>());

}

public int helper(int n, Map<Integer, Integer> cache)

{

if(n <= 1) return n;

if(!cache.containsKey(n)) {

cache.put(n, helper(n - 1, cache)

+ helper(n - 2, cache));

}

return cache.get(n);

}

sli.do/197346

Iterative approach: bottom-up
Java:

Time complexity: O(n)
Space complexity: O(n)

Where can we optimise?

Do we ever reuse a cache entry more than 2 indices
away from the current iteration?

public int fib(int n) {

if(n <= 1) return n;

int[] cache = new int[n + 1];

cache[1] = 1;

for(int i = 2; i <= n; i++) {

cache[i] = cache[i - 1] + cache[i - 2];

}

return cache[n];

}

sli.do/197346

Iterative approach: only cache needed values
Java:

Time complexity: O(n)
Space complexity: O(1)

Where can we improve?
This solution is liable to cause an integer overflow.

Further work. Reimplement this to be able to
handle large n.

public int fib(int n) {

if(n <= 1) return n;

int prev = 0, total = 1, tmp; // tmp vars

for(int i = 2; i <= n; i++) {

tmp = total; // keep total to update prev

total = total + prev; // calc next value

prev = tmp; // update prev

}

return total;

}

sli.do/197346

