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About Me

● Computing Final Year MEng.

● Software Engineer Intern @ Microsoft.

● Previously interned at a fintech startup and a large oil & gas service provider.

● I have done a lot of interviews.

● Your Well-being Dep Rep :).
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Technical Interview: Coding Section
Code Review

1. Code snippet is shown to you:

1. Questions about what it does.

2. Questions about the performance of the code.

3. Questions about what improvements could be 
made. (Maybe even implementation)

Coding Problem

1. You are given a problem statement:

“Given an array of integers nums and an 
integer target, return indices of the two 
numbers such that they add up to target.”

1. Discuss and implement a solution to the 

problem.

2. Questions about the performance of the 

code.

3. Iterate between step 2 and 3 until an 

optimal solution is reached or you run out of 

time.

def f(x: list[str]) -> int:

count = 0

for s in x:

if g(s):

count += 1

return count
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How do you measure the 
performance of code?
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Code Performance

● How long does it take to run on an arbitrary input? 

What happens as the size of the input increases?

● What is the memory footprint of the execution on an 

arbitrary input? What happens as the size of the 

input increases?

Time Space
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How do you describe the 
performance of code in an 

interview?
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Big O Notation

A standard way to describe the asymptotic upper 

bound of a function. More on this in Algorithms II :)

● Why the upper bound? 
○ Be able to handle the worst case.

● What is the input size?
○ Length of a list.

○ Depth of a tree.

○ How large a number is.
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Big O Notation
Function Big O Name

f(n) = 42 O(1) Constant

f(n) = 10log(n) O(log(n)) Logarithmic

f(n) = 60n + 2 O(n) Linear

f(n) = 12n2 O(n2) Quadratic

f(n) = cnx O(nx) Polynomial

f(n) = 2n O(2n) Exponential

f(n) = 3nlog(n) O(nlog(n)) Log-linear / Quasilinear

f(m, n) = mn + mlog(n) 
+ 3m + 2n

O(mn) N/A

Rules:
1. Drop constants 
2. Drop non-dominant terms
3. If you have multiple inputs all should 

appear in the result, apply 1, 2 to each 
input’s terms.
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Time Complexity

“Time complexity is the amount of time taken by an algorithm to run, as a function of the length of 

the input. It measures the time taken to execute the statements of code in an algorithm.”

● We can assume primitive operations (that make up statements) will take a constant amount of 

real time to execute.

● Therefore we can estimate the runtime by the number of statements executed given an input.
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General Approach To Calculating Time 
Complexity

1. Unless given, clearly state variables you are going to use to describe your inputs e.g. n is the 

length/size of input1.

2. Walk through your code statement by statement and assign a time complexity to it in terms of 

your variables. Add comments to your code if you have to.

3. Group logical sections of code together (discussed after) to create the terms in the final 

function on the input.

4. Use Big O notation to describe the time complexity.
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Single statement
Java:

● Primitive operations e.g. arithmetic, logical, 

bitwise etc. Can be assumed to run in 

constant time or O(1)

● Method calls can be a bit more complex. 

These may require deeper knowledge about 

the method e.g. Arrays.binarySearch(...) in 

Java has a time complexity of O(log2(n)). 

public int f(List<Integer> x) {

return x.size(); // O(1)

}

public int f(int x, int y) {

return x + y; // O(1)

}
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Conditionals (If-else/Switch statements)

1. Calculate the time complexity of each 

branch, also including the condition 

evaluation (additive).

2. Assign the worst time complexity to the if-

statement.

Java:

// n is the length of foo

public int f(int[] foo) {

// O(n)

if(foo.length % 2 == 0) { // O(1)

return evenFunc(foo); // O(log(n))

} else {

return oddFunc(foo); // O(n)

}

}
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Loops

1. First calculate the time complexity of the 

statements that are executed inside the 

loop.

2. Multiply this by the length of the loop.

3. For nested loops you can recursively follow 

the steps above. Starting at the inner-most 

loop moving outwards.

Java:

// n is the size of xs

public boolean f(int[] xs, int t) {

...

for(int x : xs) { // O(1 * n) = O(n)

if(x == t) return true; // O(1)

}

...

}
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Loops

1. First calculate the time complexity of the 

statements that are executed inside the 

loop.

2. Multiply this by the length of the loop.

3. For nested loops you can recursively follow 

the steps above. Starting at the inner-most 

loop moving outwards.

Java:

// n <- size of xs

public boolean f(int[] xs, int t) {

...

// O(n * t) = O(nt)

for(int x : xs) {

// O(t * 1) = O(t)

for(int i = 0; i < t; i++) { 

f(x,i); // O(1)

}

}

...

}
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Consecutive Statements

1. Calculate the time complexity for 

each statement / logical group of 

statements.

2. Add these together.

3. Simplify with Big O rules.

Java:

// n <- size of xs

public List<Integer[]> f(int[] xs, int t) {

Arrays.sort(xs); //O(nlog(n))

List<Integer[]> pairs = new ArrayList<>(); // O(1)

for(int i : xs) { // O(n * n) = O(n2)

for(int j : xs) { // O(n * 1) = O(n)

if(i * j == t) 

pairs.add(new Integer[]{i, j}); // O(1)**

}

}

return pairs; //O(1)

}

Time complexity:
O(nlog(n) + 1 + n2 + 1) = O(n2)

** Amortized time complexity
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Recursion 1. Figure out worst time complexity of the method 

assuming you have the value of the recursive call.

2. Roughly calculate the number of recursive calls.

3. Multiply this by the number of recursive calls. 

4. Simplify with Big O.

Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) { 

return 1; 

} 

return n * f(n - 1);

}

// assume n >= 0

public int f(int n) {

if(n <= 1) { // O(1)

return 1; // O(1)

} 

return n * f(n - 1); // * is O(1)

}

Time complexity: O(1 * n) = O(n)

...f(n) f(n - 1) f(n - (n - 1))

n  calls

Recursion 
Tree
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Recursion
Java:

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n; // O(1)

return fib(n - 1) + fib(n - 2); // O(1)

}

Visualise recursion tree

fib(n)

fib(n - 2)

fib(n - 2)fib(n - 1)

fib(n - 4)fib(n - 3)fib(n - 3)

...

fib(n - (n - 1))

d (tree depth) = n
#nodes (assuming full tree) = 2d - 1 = 2n -
1
O(1 * #nodes) = O(2n - 1) = O(2n)
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Space Complexity

“Space complexity is the amount of memory used by the algorithm (including the input values 
to the algorithm) to execute and produce the result.”

Space Complexity = Input Space + Auxiliary Space

● Input Space: Space allocated to store the input.
● Auxiliary Space: Temporary space allocated during the algorithm’s execution.
● Generally, during interviews, the focus is on the Auxiliary Space used by your solution. So we 

will focus on that.
● We do not need to think in bytes, we can assume overhead is constant and primitive data type 

/ static data structure sizes are constant too.
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General Approach To Calculating Space 
Complexity

Pretty much the same as time complexity.

1. Unless given, clearly state variables you are going to use to describe your inputs e.g. d is the 

depth of tree1.

2. Walk through your code statements look for ones that will allocate memory.

3. Figure out the maximum sizes for dynamic data structures (ones that can grow and shrink).

4. Sum all of these together.

5. Use Big O notation to describe the space complexity / auxiliary space used.
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Auxiliary Space: Variable Declaration
1. Initialising primitive types e.g. int, char, 

bool, etc or static data types will have 

constant space (O(1)).

2. Initialising a dynamic data structures will 

usually have constant overhead.

3. Initialising an array:
a. Size known at compile time: constant

b. Size dependent on input (evaluated at 

runtime): a function of the input.

Java:

public void f(int[] xs) {

int len = xs.length;

int[] arr1 = new int[len]; 

int[] arr2 = new int[26]; 

List<Integer> l = new ArrayList<>(); 

}

// n is length of xs

public void f(int[] xs) {

int len = xs.length; // O(1)

int[] arr1 = new int[len]; // O(n)

int[] arr2 = new int[26]; // O(1)

List<Integer> l = new ArrayList<>(); // O(1)

}
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public List<Integer> f(int[] xs) {

List<Integer> l = new ArrayList<>(); 

for(int i = 0; i < xs.length; i++) { 

if(xs[i] % 2 == 0) l.add(i); 

}

return l;

}

Auxiliary Space: Modifying Dynamic Data Structures

● Dynamic data structures can allocate and 

deallocate memory (grow or shrink) during 

runtime e.g. lists, maps / dicts, trees, 

graphs, heaps, etc.

● Look for methods that will modify their 

size.

● For each of these data structures calculate 

the maximum size (worst case) they can 

reach during execution and sum them.

Java:

public void f(int[] xs) {

int len = xs.length;

int[] arr1 = new int[len]; 

int[] arr2 = new int[26]; 

List<Integer> l = new ArrayList<>(); 

}

// n is the length of xs

public List<Integer> f(int[] xs) {

List<Integer> l = new ArrayList<>(); // O(n)

// O(1) for i

for(int i = 0; i < xs.length; i++) { 

if(xs[i] % 2 == 0) l.add(i); // <-

}

return l;

}

Auxiliary Space = O(1 * n) = O(n)
Input size = O(n)
Space Complexity = O(n + n) = O(n) 
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1. Think about how method calls are executed
a. Each method call pushes a stack frame onto the call 

stack.

b. Information about parameters (values/references), 

local variables, return addresses, etc are stored in 

this stack frame.

c. Recursion causes the call stack to grow until the base 

case is reached, then it will shrink to aggregate the 

results.

2. Again visualise the recursion tree and figure out the 

max depth. This is the maximum number of stack 

frames present for the method on the call stack at 
one time.

Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) { 

return 1; 

} 

return n * f(n - 1);

}

Auxiliary Space: Recursion
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Java:

// assume n >= 0

public int f(int n) {

if(n <= 1) { 

return 1; 

} 

return n * f(n - 1);

}

Auxiliary Space: Recursion
...f(n) f(n - 1) f(n - (n - 1))

n  calls

f(3)

Call Stack

...

f(2)

f(1)

Auxiliary Space = O(1 * n) = O(n)
Input size = O(1)
Space Complexity = O(1 + n) = O(n) 
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Java:

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n;

return fib(n - 1) + fib(n - 2);

}

Visualise recursion tree

fib(n)

fib(n - 2)

fib(n - 2)fib(n - 1)

fib(n - 4)fib(n - 3)fib(n - 3)

...

fib(n - (n - 1))

d (max tree depth) = n
Auxiliary Space = O(n)
Input Size = O(1)
Space Complexity = O(n)

Auxiliary Space: Recursion
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General Approach To Optimising A solution

After you have calculated the space and time complexity for your solution. You might wonder how you 

could improve it or whether it is possible to.

● Have an idea of the best conceivable runtime: If you were to solve the problem by hand what steps 

would you intuitively take?

● Look for bottlenecks: sections of code which produce the dominant terms in your worst case 

complexities.

● Space / Time trade-off: You can most likely sacrifice space to improve the time complexity e.g. 

caching.

● Optimise for the problem context. Are there constraints/patterns in the input,  more reads than 

writes etc?
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An Example
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Calculate The nth Fibonacci Number (0 indexed)
Java: Time complexity: O(2n)

Space complexity: O(n)

Where can we optimise?

The recursive branches causes an exponential 
number of method calls? Can we reduce this?

Overlapping subproblems! We are solving things 
we have solved before.

// assume n >= 0

public int fib(int n) {

if(n <= 1) return n; 

return fib(n - 1) + fib(n - 2);

}

sli.do/197346



Memoisation / Caching
Java:

Time complexity: O(n)
Space complexity: O(n + n) = O(n)

Where can we optimise?

We are still calculating in a top-down approach so 
the call stack is still growing quite large. This could 
lead to a stack overflow error.

public int fib(int n) {

if(n <= 1) return n;

return helper(n, new HashMap<>());

}

public int helper(int n, Map<Integer, Integer> cache) 

{

if(n <= 1) return n;

if(!cache.containsKey(n)) {

cache.put(n, helper(n - 1, cache) 

+ helper(n - 2, cache));

}

return cache.get(n);

}
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Iterative approach: bottom-up
Java:

Time complexity: O(n)
Space complexity: O(n)

Where can we optimise?

Do we ever reuse a cache entry more than 2 indices 
away from the current iteration?

public int fib(int n) {

if(n <= 1) return n;

int[] cache = new int[n + 1];

cache[1] = 1;

for(int i = 2; i <= n; i++) {

cache[i] = cache[i - 1] + cache[i - 2]; 

}

return cache[n];

}
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Iterative approach: only cache needed values
Java:

Time complexity: O(n)
Space complexity: O(1)

Where can we improve?
This solution is liable to cause an integer overflow.

Further work. Reimplement this to be able to 
handle large n.

public int fib(int n) {

if(n <= 1) return n;

int prev = 0, total = 1, tmp; // tmp vars

for(int i = 2; i <= n; i++) {

tmp = total; // keep total to update prev

total = total + prev; // calc next value

prev = tmp; // update prev

}

return total;

}
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