
Primer on 
Linked Lists
Anindita Ghosh



Materials

Brush up - 30 days of code [Hackerrank]
Learn - Cracking the Coding Interview
Practice - Leetcode



What are linked lists?

Head

Pointer

Node



Variations on LL

Doubly Linked Cyclic

Multiple Pointers



Implementation

public class ListNode{
int val;
ListNode next;

ListNode(){}

ListNode(int val){this.val = val;}

ListNode(int val, ListNode next){
this.val = val;
this.next = next;

}
}



Operations: Contains
public boolean contains(ListNode head, int val){

ListNode curr = head;

while(curr != null){
if(curr.val == val) return true;
curr = curr.next

}

return false;
}



Operations: Add
public boolean add(ListNode head, ListNode node){

ListNode curr = head;

while(curr.next != null){
curr = curr.next

}

curr.next = node
return true;

}



Operations: Delete
public ListNode delete(ListNode head, int val){

ListNode curr = head;
ListNode res = null;

while(curr.next != null){
if(curr.next.val == val){

res = curr.next
curr.next = curr.next.next
break;

}
curr = curr.next

}

return res
}



All operations involve 
traversing the linked list 

and manipulating pointers



Answering Process

1. Define your linked list structure
2. Voice your idea of what to do

- Use specific examples to show you 
understand the problem

3. Code it up
4. Go line by line on one example Debug

State time and space complexity



Idea
Pseudocode
Actual Code



Problem:
Given the head of a singly linked list, 

return the middle node of the linked list.
If there are two middle nodes, return the 

second middle node



Idea
Pseudocode
Actual Code

Problem:
Given the head of a singly linked list, 

return the middle node of the linked list.
If there are two middle nodes, return the 

second middle node

We’re given the head - Need to traverse linked list
Middle - Count the number of elements & divide by 2 

as int

2nd middle???

Division to int is a floor operation

1 -> 2 -> 3 -> 4 -> 5 5 elems / 2 = 2 return 3

1 -> 2 -> 3 -> 4 4 elems / 2 = 2 return 3

The node we want is n/2 where n is num elems



Idea
Pseudocode
Actual Code

Problem:
Given the head of a singly linked list, 

return the middle node of the linked list.
If there are two middle nodes, return the 

second middle node

curr = head
len = 0

while(not at end){
len++
curr = curr.next

}

res = head

for(int i until at len/2){
res = res.next

}

return res



Idea
Pseudocode
Actual Code

Problem:
Given the head of a singly linked list, 

return the middle node of the linked list.
If there are two middle nodes, return the 

second middle node

public ListNode middle(ListNode head){
ListNode curr = head;
int len = 0;

while(curr != null){
len++;
curr = curr.next;

}

ListNode res = head;
for(int i=0; i < len/2; i++){

res = res.next;
}

return res;
}

1 -> 2 -> 3 -> 4 -> 5

1 -> 2 -> 3 -> 4



Problem:
Given the head of a sorted linked list, 
delete all duplicates such that each 

element appears only once.
Return the linked list sorted as well.



Idea
Pseudocode
Actual Code

Problem:
Given the head of a sorted linked list, 
delete all duplicates such that each 

element appears only once.
Return the linked list sorted as well.

Sorted so in order

1 -> 2 -> 2 -> 2-> 3 -> 3 -> 4 -> 4 

If pointing to node with same value, find first node 
with different value and point to it

Need to keep track of first one & first diff val; 2 
pointers!

Return linked list, so need to return head. Will head 
change? It shouldn’t so can just return input 

variable

What about all duplicates? 1 -> 1 -> 1 -> 1

Need to return 1; 2nd pointer will reach null so need 
to set next to null



Idea
Pseudocode
Actual Code

Problem:
Given the head of a sorted linked list, 
delete all duplicates such that each 

element appears only once.
Return the linked list sorted as well.

prev = head
curr = head.next

while(neither are null){
if(prev.val == curr.val) curr = curr.next
else {

prev.next = curr
curr = curr.next
prev = prev.next

}
}

prev.next = curr
return head



Idea
Pseudocode
Actual Code

Problem:
Given the head of a sorted linked list, 
delete all duplicates such that each 

element appears only once.
Return the linked list sorted as well.

public ListNode removeDuplicates(ListNode head){
ListNode prev = head;
ListNode curr = head.next;

while(curr != null && prev != null){
if(prev.val == curr.val){

curr = curr.next;
} else {

prev.next = curr;
curr = curr.next;
prev = prev.next;

}
}

prev.next = curr;
return head;

}



Things to keep in mind

● Early stopping cases? Head is only elem or head is null?
● Will there be any chance of a new head?
● How many variables need to be tracked? One or two?
● Which pointers do you move?
● Which pointers do you reset?
● Which variables may reach a premature null?
● What cases do you have to be careful of? Edge cases 

and general case?



Further Problems

Given the head of a singly linked list, reverse the list, and return the 
reversed list.

1 -> 2 -> 3 -> 4 return 1 <- 2 <- 3 <- 4

Given the head of a singly linked list, remove every 2nd element and 
return the modified list.

1 -> 2 -> 3 -> 4 -> 5 -> 6 return 1 -> 3 -> 5

Given the head of a singly linked unsorted list, return the first 
duplicate element. Can you do this without using any additional 

data structures?
1 -> 5 -> 2 -> 3 -> 2 -> 5 return 2


